首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60507篇
  免费   5863篇
  国内免费   6604篇
电工技术   3345篇
技术理论   66篇
综合类   7346篇
化学工业   7057篇
金属工艺   1990篇
机械仪表   3555篇
建筑科学   16266篇
矿业工程   2007篇
能源动力   1877篇
轻工业   1085篇
水利工程   3663篇
石油天然气   1565篇
武器工业   969篇
无线电   7231篇
一般工业技术   5299篇
冶金工业   1612篇
原子能技术   567篇
自动化技术   7474篇
  2024年   124篇
  2023年   945篇
  2022年   1293篇
  2021年   1855篇
  2020年   1936篇
  2019年   1478篇
  2018年   1417篇
  2017年   1850篇
  2016年   2031篇
  2015年   2292篇
  2014年   4990篇
  2013年   3780篇
  2012年   4550篇
  2011年   4829篇
  2010年   3905篇
  2009年   3987篇
  2008年   3943篇
  2007年   4703篇
  2006年   4209篇
  2005年   3781篇
  2004年   3275篇
  2003年   2559篇
  2002年   1923篇
  2001年   1469篇
  2000年   1197篇
  1999年   946篇
  1998年   691篇
  1997年   571篇
  1996年   484篇
  1995年   425篇
  1994年   350篇
  1993年   258篇
  1992年   220篇
  1991年   120篇
  1990年   116篇
  1989年   100篇
  1988年   68篇
  1987年   44篇
  1986年   26篇
  1985年   35篇
  1984年   42篇
  1983年   21篇
  1982年   19篇
  1981年   16篇
  1980年   19篇
  1979年   9篇
  1959年   8篇
  1957年   7篇
  1956年   6篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
41.
Photocatalytic H2 generation using semiconductor photocatalysts is considered as a cost-effective and eco-friendly technology for solar to energy conversion; however, the present photocatalysts have been recognized to depict low efficiency. Currently, porous coordination polymers known as metal-organic frameworks (MOFs) constituting flexible and modifiable porous structure and having excess active sites are considered to be appropriate for photocatalytic H2 production. This review highlights current progress in structural development of MOF materials along with modification strategies for enhanced photoactivity. Initially, the review discusses the photocatalytic H2 production mechanism with the concepts of thermodynamics and mass transfer with particular focus on MOFs. Elaboration of the structural categories of MOFs into Type I, Type II, Type III and classification of MOFs for H2 generation into transition metal based, post-transition metal based, noble-metal based and hetero-metal based has been systematically discussed. The review also critically deliberate various modification approaches of band engineering, improvement of charge separation, efficient irradiation utilization and overall efficiency of MOFs including metal modification, heterojunction formation, Z-scheme formation, by introducing electron mediator, and dye based composites. Also, the MOF synthesized derivatives for photocatalytic H2 generation are elaborated. Finally, future perspectives of MOFs for H2 generation and approaches for efficiency improvement have been suggested.  相似文献   
42.
43.
Porous Si3N4 ceramics with monomodal and bimodal pore structure were prepared by cold isostatic pressing and freeze-casting, respectively. Both the pore structure and permeability behavior of the porous Si3N4 ceramics were tailored by altering the pressure of cold isostatic pressing and the composition and content of solvent during freeze-casting. The specimens obtained by cold isostatic pressing exhibited smaller Darcian and non-Darcian permeability than those of freeze-casted samples due to their lower open porosity, smaller pore size and higher tortuosity. On the other hand, compared with the ice-templated specimens having the same solvent volume in the ceramic slurries as them during freeze-casting, the emulsion-ice templated samples showed smaller open porosity, macropore size and Dacian permeability, but the similar non-Darcian permeability because of their larger micropores and better pore interconnectivity.  相似文献   
44.
To meet the demand of producing hydrogen at low cost, a molybdenum (Mo)-doped cobalt oxide (Co3O4) supported on nitrogen (N)-doped carbon (x%Mo–Co3O4/NC, where x% represents Mo/Co molar ratio) is developed as an efficient bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). This defect engineering strategy is realized by a facile urea oxidation method in nitrogen atmosphere. Through X-ray diffraction (XRD) refinement and other detailed characterizations, molybdenum ion (Mo4+) is found to be doped into Co3O4 by substituting cobalt ion (Co2+) at tetrahedron site, while N is doped into carbon matrix simultaneously. 4%Mo–Co3O4/NC is the optimized sample to show the lowest overpotentials of 91 and 276 mV to deliver 10 mA cm?2 for HER and OER in 1 M potassium hydroxide solution (KOH), respectively. The overall water splitting cell 4%Mo–Co3O4/NC||4%Mo–Co3O4/NC displays a voltage of 1.62 V to deliver 10 mA cm?2 in 1 M KOH. The Mo4+ dopant modulates the electronic structure of active cobalt ion (Co3+) and boosts the water dissociation process during HER, while the increased amount of lattice oxygen and formation of pyridinic nitrogen due to Mo doping benefits the OER activity. Besides, the smaller grain size owing to Mo doping leads to higher electrochemically active surface area (ECSA) on 4%Mo–Co3O4/NC, resulting in its superior bifunctional catalytic activity.  相似文献   
45.
Flow field structure can largely determine the output performance of Polymer electrolyte membrane fuel cell. Excellent channel configuration accelerates electrochemical reactions in the catalytic layer, effectively avoiding flooding on the cathode side. In present study, a three-dimensional, multi-phase model of PEMFC with a 3D wave flow channel is established. CFD method is applied to optimize the geometry constructions of three-dimensional wave flow channels. The results reveal that 3D wave flow channel is overall better than straight channel in promoting reactant gases transport, removing liquid water accumulated in microporous layer and avoiding thermal stress concentration in the membrane. Moreover, results show the optimal flow channel minimum depth and wave length of the 3D wave flow channel are 0.45 mm and 2 mm, respectively. Due to the periodic geometric characteristics of the wave channel, the convective mass transfer is introduced, improving gas flow rate in through-plane direction. Furthermore, when the cell output voltage is 0.4 V, the current density in the novel channel is 23.8% higher than that of conventional channel.  相似文献   
46.
Zirconolite-rich full ceramic wasteforms designed to immobilize Pu-bearing wastes were produced via hot isostatic pressing (HIP) using stainless steel (SS) and nickel (Ni) HIP canisters. A detailed profiling of the elemental compositions of the major and minor phases over the canister–wasteform interaction zone was performed using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDS) characterization. Bulk sample analyses from regions near the center of the HIP canister were also conducted for both samples using X-ray diffraction and SEM-EDS. The sample with the Ni HIP canister showed almost no interaction zone with only minor diffusion of Ni from the inner wall of the canister into the near-surface region of the wasteform. The sample with the SS HIP canister showed ∼100–120 μm of interaction zone dominated by high-temperature Cr diffusion from canister materials to the wasteform with the Cr predominantly incorporated into the durable zirconolite phase. We also examined, for the first time, changes to the HIP canister wall thickness caused by HIPing and demonstrated that no canister wall thinning occurred. Instead, in the areas examined, the canister wall thickness was observed to increase (up to ∼20%) due to the compression occurring during the HIP cycle. Further, only sparse formation of (Cr, Mn)-rich oxide particles were noted within the HIP canister inner wall area immediately adjacent to the ceramic material, with no evidence for reverse diffusion of ceramic materials. Though the HIP canister–wasteform interaction extends to ∼120 μm when using an SS HIP canister for the system investigated, this translates to <<1 vol.% for an industrial scale HIPed wasteform. Importantly, the HIP canister–wasteform interactions did not produce any obviously less durable phases in the wasteform or had any detrimental impact on the HIP canister properties.  相似文献   
47.
土木工程施工课程作为土木工程及工程管理专业的学科基础课和核心专业课程,在疫情防控期间"停课不停教""停课不停学"的要求下,通过线上平台进行授课。由于土木工程施工课程内容庞杂、综合性强、实践性强,且章节之间关联性较弱,探究既能使学生快速适应,又能保证教学质量的在线教学方法至关重要。以华南某高校土木工程施工课程为例,基于中国大学MOOC、建筑云课、腾讯课堂、QQ群等线上平台讲授教学内容,并运用问卷调查对课程线上教学效果进行评价。结果表明,线上教学为学生提供了丰富灵活的学习方式,显著提高了学生的自主学习能力,扩大了学生的知识面,达到了较好的学习效果。  相似文献   
48.
《Ceramics International》2022,48(17):24454-24461
Enhancement of thermoelectric properties by virtue of decreased electrical resistance through grain boundary engineering is realised in this study. A robust strategy of optimisation of the transport properties by tuning the energy filtering effects at the interfaces by decreasing the interfacial electrical resistance is achieved in LaCoO3 (LCO). This is accomplished by the incorporation of multilayer graphene within the parent LCO matrix containing multi-scale nano/micro grains. The present work has attained a substantial increment in electrical conductivity from a value of 96 Scm-1 for bare LCO to ~5300 Scm-1 at 750 K by incorporating 0.08 wt% multilayer graphene in LCO. No significant change in thermal conductivity is observed due to the presence of multilayer graphene in LCO. A zT of 0.33 at 550 K for 0.08 wt% multi-layer graphene incorporated LCO composite is achieved which is the highest thermoelectric figure of merit value for undoped LCO reported until now.  相似文献   
49.
Highly efficient electrocatalysts composed of earth-abundant elements are desired for water-splitting to produce clean and renewable chemical fuel. Herein, a heteroatomic-doped multi-phase Mo-doped nickel phosphide/nickel sulfide (Mo-NiPx/NiSy) nanowire electrocatalyst is designed by a successive phosphorization and sulfuration method for boosting overall water splitting (both oxygen and hydrogen evolution reactions (HER)) in alkaline solution. As expected, the Mo-NiPx/NiSy electrode possesses low overpotentials both at low and high current densities in HER, while the Mo-NiPx/NiSy heterostructure exhibits high active performance with ultra-low overpotentials of 137, 182, and 250 mV at the current density of 10, 100, and 400 mA cm−2 in 1 m KOH solution, respectively, in oxygen evolution reaction. In particular, the as-prepared Mo-NiPx/NiSy electrodes exhibit remarkable full water splitting performance at both low and high current densities of 10, 100, and 400 mA cm−2 with 1.42, 1.70, and 2.36 V, respectively, which is comparable to commercial electrolysis.  相似文献   
50.
Yb3+-doped Lu2O3 nanoparticles produced by laser ablation were used to fabricate transparent ceramics by a combination of pressureless sintering in vacuum (PS) followed by a hot isostatic pressing (HIPing). The samples were subjected to various PS and HIPing conditions and the microstructure evolution and its correlation with the transmittance were investigated. Relative densities of over 97% were achieved after PS at the temperatures of 1250–1700 °C. Rapid grain growth occurred within PS and HIPing temperatures above 1500 °C leading to formation of intragranular porosity which is deleterious for optical quality. Higher transmittance (81.7% at λ = 1080 nm) and ultrafine microstructure with an average grain size of 0.35 μm were obtained by PS at 1250 °C followed by HIPing at 1400 °C for 5 h under 207 MPa. Output power of 2.02 W with a slope efficiency of 46.5% was obtained under a quasi-continuous wave end pumping at 929.4 nm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号